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INTRODUCI'ION 

Nonlinearit ies now appear regular* i n  a l l  phases of aerodynamic 
research. Experimenters i n  dynamic s t a b i l i t y  have par t icu lar  reason 
t o  be concerned about them, since t h e  methods ava i lab le  f o r  ex t rac t -  
ing s t a b i l i t y  der ivat ives  from dynamical data  f o r  t h e  most pa r t  do 
not acknowledge t h e  presence o f  nonl inear i t ies .  
charac te r i s t ics  are nonlinear, these methods continue t o  give 
r e s u l t s ,  but it becomes very d i f f i c u l t  t o  say precisely what t h e  
r e s u l t s  mean. Consider, for example, t h e  two widely used experi- 
mental methods sketched below. 

When t h e  aerodynamic 

I n  t h e  first method, t h e  s t ing  i s  brought t o  a f ixed  mean angle of 
a t t ack  and t h e  model i s  forced t o  o s c i l l a t e  harmonically about 
% with a small amplitude a0. The work done per cycle i s  meas- 
ured and iden t i f i ed  with t h e  aerodynamic damping der ivat ive 
C% + Cw. I n  t h e  second method, t h e  model i s  displaced from zero 
angle of a t tack  against  t h e  resis tance of a spring and then released. 
The decay of t h e  free osc i l l a t ion  about zero i s  measured and iden- 
t i f i e d  with t h e  damping derivative When t h e  aerodynamic 
moment i s  a l i n e a r  function of i t s  var iables ,  t h e  same value f o r  t h e  
damping der iva t ive  i s  obtained *om both experiments. When t h e  
moment i s  nonlinear, two ent i re ly  d i f fe ren t  r e s u l t s  can be obtained. 
Neither result i s  necessarily wrong; each merely r e f l e c t s  t h e  par-  
t i c u l a r  method i n  use, which in  t u r n  r e f l e c t s  a pa r t i cu la r  facet of 
t h e  underlying nonlinear phenomenon. 

% 

'2% + Cw. 

Consider t h e  analyst  who must use these r e s u l t s  t o  analyze 
t h e  motion of a vehicle  i n  f l i g h t .  
cons is t s  of small deviations from a t r i m  condition, the  f i rs t  r e s u l t  
may be applicable.  If t h e  motion he an t ic ipa tes  consis ts  of large-  
amplitude osc i l l a t ions  around zero, t h e  second result may be 

If t h e  motion he an t ic ipa tes  
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applicable.  But, suppose he ant ic ipates  t h e  second and has results 
only fo r  t h e  f irst .  Or, suppose he can an t i c ipa t e  nei ther  motion. 
H e  has no assurance a t  a l l  that  t h e  r e s u l t s  a t  hand have any mean- 
i n g  i n  h i s  problem. Obviously, t h i s  s i t ua t ion  imposes a severe 
l imi ta t ion  on t h e  usefulness of wind-tunnel measurements of s t a b i l i t y  
coef f ic ien ts  . 

It i s  c l ea r  t h a t  i f  t h i s  l imi ta t ion  i s  t o  be overcome, r e s u l t s  
from di f fe ren t  f a c i l i t i e s  and d i f fe ren t  experimental techniques must 
be made t o  cor re la te ,  so t h a t  they may be used interchangeably. I n  
other words, t h e  experimental r e s u l t s  must be freed from dependence 
on t h e  par t icu lar  method used t o  determine them. 
( r e f .  1) addressed t o  t h i s  problem i s  b r i e f ly  summarized i n  t h e  
remainder of t h i s  note. 

A recent report  

GENERAL FORM FOR THE AERODYNAMIC PITCHING MOMENT 

Before t h e  results of an experiment can be f reed  from t h e  
method used t o  determine them, t h e  t r u e  form of t h e  equation govern- 
ing t h e  motion must be established. This form w i l l ,  of course, 
depend on t h e  form of t h e  aerodynamic forces  and moments. The prob- 
l e m  i s ,  therefore ,  t o  write t h e  aerodynamic forces  and moments i n  a 
form which i s  su f f i c i en t ly  general t o  apply t o  any of a wide var ie ty  
of possible  motions. I n  t h e  l inear  case, one achieves t h i s  by writ- 
ing t h e  forces  and moments as  a sum of terms involving s tab ' l l i ty  
der ivat ives .  The question then arises, do s t a b i l i t y  der ivat ives  
even ex i s t  i n  t h e  nonlinear case? Based upon t h e  analysis  of r e f -  
erence 1 the  answer i s  yes ,  with ce r t a in  s t r i c t  reservat ions.  For 
t h e  longi tudinal  case, involving a rb i t r a ry  var ia t ions  of angle of 
a t tack  a and angle of p i tch  8 ,  t h e  aerodynamic pitching moment 
has t h e  following form 

+ &(t)- 1 C % ( U ( t ) )  

VO 

The terms have t h e  following meaning: The f irst  t e r m  C m ( a ; a ( t ) )  
i s  t h e  familiar s teady-state  pitching-moment coeff ic ient  due t o  
angle of a t tack ,  evaluated at each ins tan t  as though t h e  instan-  
taneous value of 
value. The i n f i n i t y  symbol as used i n  t h i s  liotation i s  merely a 
reminder t h a t  t h e  flow i s  fixed for  a l l  t i m e ,  t h a t  i s ,  i s  steady 
a t  t h e  pa r t i cu la r  value of a under consideration. The second 
term Cmg(a ;a ( t ) )  i s  t h e  r a t e  of change with 6 
moment coeff ic ient  t h a t  would be measured i n  a steady flow, 

a, a( t ) ,  were f ixed f o r  an i n f i n i t e  t i m e  at t h a t  

of t he  pitching- 
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evaluated a t  6 = 0 with a f ixed fo r  an i n f i n i t e  t i m e  ( thus t h e  
i n f i n i t y  s ign again) a t  t h e  instantaneous value a( t ) .  The t h i r d  
term Cm is  defined by means of an in tegra l :  It i s  t h e  area 
bounded by t h e  i n d i c i a l  pitching-moment curve and the  f ina l  value 
of t he  curve, t h e  i n d i c i a l  response being evaluated with a f ixed  
at t h e  instantaneous value a(t) and with 4 f ixed at zero. 

It must be emphasized tha t  t h e  def ini t ions j u s t  given f o r  t he  

Within 
terms i n  equation (1) are precise  and unique; they arise from a 
rigorous analysis  correct  t o  the f i rs t  order i n  frequency. 
t h i s  order of approximahion, a l te rna t ive  forms or  def in i t ions  would 
not be rigorously j u s t i f i a b l e .  Thus, for  example, note t h a t  each 
of t he  terms i n  equation (1) shows a dependence only on t h e  instan-  
taneous angle of a t tack  a ( t ) ;  t o  show a dependence on &(t), 6 ( t ) ,  
or higher der ivat ives  of ct and 8 would not be j u s t i f i a b l e .  
Equation (1) i s  the  desired general form which should underlie a l l  
spec ia l  cases and apply t o  a l l  pa r t i cu la r  motions. 

FORM OF THE AERODYNAMIC PITCHING MOMENT I N  A SPECIAL CASE 

Further specif icat ions of t h e  form of C m ( t )  are possible i n  
pa r t i cu la r  cases. L e t  us consider one of these f o r  a wind-tunnel 
experiment. I n  most wind-tunnel experiments, t h e  model i s  pinned 
t o  a f ixed  point at i t s  ax i s  of ro ta t ion .  Then 6 = &. For t h e  
wind-tunnel experiment, therefore ,  C q  and (2% 
C m ( t )  takes t h e  form 

simply add, and 

Now suppose t h a t  t he  model under study i s  known from s t a t i c  tests 
t o  have a s t a t i c  pitching-moment curve which i s  representable as 
an odd cubic i n  a over a subs tan t ia l  range of a. Then C m ( w ; a ( t ) )  
has t h e  form of equation (3) below, and t h e  rate of change of 
with a 

Cm 
a ,  C m a ( " ; a ( t ) ) ,  has t h e  form of an even quadratic i n  

hi* (4)). 

C m ( w ; a ( t ) )  = a(a + bct2) (3) 

C % ( w ; a ( t ) )  = a + 3ba2 ( 4) 

Since t h e  boundary conditions which y i e ld  
those which y i e l d  
l ikewise w i l l  show no more than an even quadratic dependence on 

Cms a r e  very similar t o  

a. 
c% C k ,  it i s  very reasonable t o  assume tha t  
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Under similar conditions,  it can be argued t h a t  
an even quadratic i n  a. Then, so i s  t h e  sum Cms + CG. Thus, 

C% a l s o  w i l l  be 

c “s ( m ; a ( t ) )  = c + da2 ( 5 4  

c%(u(t)) = e + fa2 

and 

Alternat ively,  C% + C% 
steady-state parameter 

can b e  wr i t ten  as a l i n e a r  function of t h e  
C%(m;u(t) ) as shown below. 

Cms + cm& = c + D & ( m ; a ( t ) )  ( 6 )  

This pa r t i cu la r ly  simple form for t h e  damping coeff ic ient  has c e r t a i n  
consequences which could be checked experimentally. 

EXPERIMENTAL CORRELATIONS 

Now l e t  us consider t h e  main object ive,  cor re la t ion  of 
experimental results. 
cases,  knowledge of t h e  form of t h e  pitching-moment coef f ic ien t  
enables one t o  f r e e  the  r e su l t s  f o r  w i n g  coef f ic ien t  obtained by 
a pa r t i cu la r  experimental method from dependence on t h a t  method. 
If t h e  r e s u l t s  from two very different  experimental methods were 
both freed from dependence on t h e i r  respect ive methods, then those 
r e s u l t s  should cor re la te .  R e s u l t s  which co r re l a t e  can of course 
be used interchangeably. 
can be used interchangeably, then we are assured t h a t  e i the r  r e s u l t  
i s  a general  one; t h a t  i s ,  one which i s  appl icable  t o  any motion 
what ever. 

W e  wish t o  show t h a t ,  at  l e a s t  i n  c e r t a i n  

If r e su l t s  from two very d i f fe ren t  motions 

L e t  us assume t h a t  t he  model under consideration f u l f i l l s  t h e  
requirement discussed i n  t h e  l a s t  sect ion,  namely, t h a t  i t s  s t a t i c  
pitching-moment curve be a cubic i n  a. 
t h e  damping coef f ic ien t  should be a quadratic i n  a or ,  alterna- 
t i v e l y ,  a l i n e a r  function of the s t a t i c  pitching-moment curve 
s lope C % ( m ; a ( t ) ) .  Suppose t h i s  i s  t r u e .  Then t h i s  is  t h e  form 
w e  expect whenever a par t icu lar  experimental r e s u l t  fo r  damping 
coef f ic ien t  i s  f reed  from t h e  method of obtaining it. 
consider how t h i s  might be achieved i n  spec i f i c  experiments. 

Then we an t i c ipa t e  t h a t  

We next 
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MPERIMENTAL TECHNIQUES 

Consider t h e  two very different  experimental methods i l l u s t r a t e d  
The f i r s t ,  forced osc i l l a t ions  about a f ixed i n  the  previous sketch. 

mean angle of a t tack  cc, > is  shown again below. 

The work required t o  dr ive  the  model i s  measured and equated t o  the  
work done by t h e  aerodynamic damping moment. I n  t h e  l i nea r  case, 
t h e  work measured can be ident i f ied  with a s ingle ,  unique value of 
t h e  aerodynamic damping coeff ic ient  C% + Cw. I n  t h e  nonlinear 
case, t h i s  is  no longer t rue .  Here, when t h e  work measured i s  
iden t i f i ed  with t h e  work done by aerodynamic damping, the r e s u l t  
obtained depends on both t h e  mean angle a, and t h e  osc i l l a t ion  
amplitude ao; t h a t  i s ,  t he  resu l t  depends on t h e  method used t o  
obtain i t .  The objective then is  t o  free t h e  result from t h i s  
dependence. 

When t h e  aerodynamic damping coef f ic ien t  depends l i nea r ly  on 
t h e  instantaneous value of t h e  static pitching-moment curve slope 
( i . e. , eq. (6) ) , t h e  work done by damping w i l l  have the  form shown 
i n  equation (7) where C and D are t h e  same C and D i n  equation 
( 6 )  * 

Work/Cycle = C + DCmcre 

where 
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That  i s ,  t he  work done by h m p i n g  becomes a l inea r  function of an 
e f fec t ive  value of C%) C%,, where can be evaluated from 

s t a t i c  data and equation (8).  
damping against  

Hence, p lo t t ing  t h e  work done by 
gives a s t r a igh t  l i n e .  '%e 

Note t h a t  t h e  same s t r a igh t  l i n e  w i l l  be obtained f o r  any value 
of o sc i l l a t ion  amplitude ao. 
l i n e  give t h e  values of C and D. When these a r e  subs t i tu ted  i n  
equation ( 6 ) ,  together with the  t r u e  s t a t i c  curve 
form obtained fo r  t h e  damping coefficient 
general  - applicable t o  any motion whatever. This expectation can 
be checked by an independent experiment. 

The slope and zero intercept  of t h e  

Cx(aJ;a(t)), t h e  
Cm + Cw should then be q 

The second method, t o  be used as a check on t h e  general i ty  of 
t h e  preceding r e s u l t ,  i s  t h e  well-known f ree-osc i l la t ion  technique, 
shown again below. 
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The equation of motion fo r  t h i s  system i s  

1t.i - -  - C m ( t )  + spring terms 
qosz 

With the  same model as t h e  one used i n  t h e  f i r s t  experiment, t h e  
s t a t i c  pitching-moment curve i s  a cubic i n  a 
coeff ic ient  i s  a quadratic i n  a, so tha t  t h e  pi tching moment 
(eq. ( 2 ) )  takes t h e  form 

and t h e  damping 

Combining equations (9) 
t i o n  of motion 

(10) 
&l 
VO 

a(a + bu2) + - (ho + h s 2 )  

and (10) yields  the  following f o r  t he  equa- 

18 &l - = u(a + ba2) + - (ho + h S 2 )  + spring terms 
qs 2 VO 

I n  t h i s  form, t h e  equation of motion is  a combination of t h e  Duffing 
equation and the  Van der P o l  equation. 
t h e  equation i s  obtainable from t h e  Kryloff-Bogoliuboff method. F i t -  
t i n g  t h e  solut ion t o  t h e  measured motion his tory enables t h e  evalua- 
t i o n  of t h e  four constants a,  b, ho, h2. 
correspondence with t h e  constants 
experiment; t h a t  i s ,  C and D can be expressed as 

An approximate solut ion t o  

These have a known 
C and D used i n  t h e  first 

C = h o  -2- 
(12) 3b 

If t h e  values of computed from equations(l2) agree with 
those obtained i n  the  first experiment, then w e  have shown t h a t  
two very d i f fe ren t  experimental methods can be made t o  y i e ld  r e s u l t s  
which cor re la te .  This i n  t u r n  assures tha t  t h e  form which corre- 
lates i s  a general  one, applicable t o  any motion wha-bever. 

C and D 

SUI;GESTED EXPERIME" 

The above discussion suggests an obvious experiment: Select  a 
Cm(m;U) can be represented as a model whose s t a t i c  pitching moment 

cubic over a subs tan t ia l  range of a. Carry out t h e  two experiments 
i n  t h e  manner j u s t  described. If t h e  r e su l t s  fo r  C% + (2% can be 
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expressed as a quadratic i n  a,  and i f  t h e  values of C and D agree 
between t h e  two experiments, t h i s  will Zount both as a confirmation 
of t h e  theory and a useful means of widenikbthe  app l i cab i l i t y  of 
t h e  experimental r e su l t s .  
t ionship  between Cm + C q  and C% can be expected t o  obtain 

under a number of circumstances other than those discussed here 
a quadratic function of a). For example, a l i nea r  

r ( i*e*!  elat 1 ons i p  bet ween C% + (3% and Cma can be expected t o  obtain 
whatever t h e  var ia t ion  of C q  i s  e i t h e r  small 
or e s sen t i a l ly  independent of a. 
mental r e s u l t  which confirms t h i s  statement f o r  a model whose value 
of (2% i s  known t o  be small. Note t h a t  Cmae is  a complicated 
function of a; nzvertheless, the  re la t ionship  between work done and 

‘Re 

Final ly ,  we point out t h a t  a l i n e a r  rela- 

q 

C%, provided t h a t  
The sketch below shows an experi- 

is  qui te  obviously l inear .  
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